Cart

Your cart is currently empty.

What is BODMAS rule ?

What is BODMAS rule ?

  • L V Thatch
  • Nov, 14 , 21

The rule or order that we use to simplify expressions in math is called "BODMAS" rule.

Very simply way to remember BODMAS rule!

     B -----> Brackets

     O -----> Of (orders :Powers and radicals)

     D -----> Division

     M -----> Multiplication

     A -----> Addition

     S -----> Subtraction

Important Notes :

1. In a particular simplification, if you have both multiplication and division, do the operations one by one in the order from left to right.

2. Division does not always come before multiplication. We have to do one by one in the order from left to right. 

3. In a particular simplification, if you have both addition and subtraction, do the operations one by one in the order from left to right.

Examples : 

12 ÷ 3 x 5  =  4 x 5  =  20

13 - 5 + 9   =  8 + 9  =  17

In the above simplification, we have both division and multiplication. From left to right, we have division first and multiplication next. So we do division first and multiplication next.

Solved Problems

Problem 1 :

Evaluate :

6 + 7 x 8

Solution :

Expression

6 + 7 x 8

 

 

Evaluation

=  6 + 7 x 8

=  6 + 56

=  62

Operation

Multiplication

Addition

Result

 

Problem 2 :

Evaluate :

102 - 16 ÷ 8

Solution :

Expression

102 - 16 ÷ 8

Evaluation

=  102 - 16 ÷ 8

=  100 - 16 ÷ 8

=  100 - 2

=  98

Operation

Power

Division

Subtraction

Result

 

Problem 3 :

Evaluate :

(25 + 11) x 2

Solution :

Expression

(25 + 11) x 2

Evaluation

=  (25 + 11) x 2

=  36 x 2

=  72

Operation

Bracket

Multiplication

Result

 

Problem 4 :

Evaluate :

3 + 6 x (5 + 4) ÷ 3 -7

Solution :

Expression

3 + 6 x (5+4) ÷ 3 -7

Evaluation

=  3 + 6 x (5+4) ÷ 3 -7

=  3 + 6 x 9 ÷ 3 -7

=  3 + 54 ÷ 3 -7

=   3 + 18 -7

=   21 - 7

=   14

Operation

Bracket

Multiplication

Division

Addition

Subtraction

Result

 

Problem 5 :

Evaluate :

36 - 2(20 + 12 ÷ 4 x 3 - 2 x 2) + 10

Solution :

 

Problem 6 :

Evaluate :

6 + [(16 - 4) ÷ (22 + 2)] - 2

Solution :

Expression

6+[(16-4)÷(22+2)]-2

Evaluation

= 6+[(16-4)÷(22+2)]-2

= 6+[12÷(2²+2)]-2

= 6+[12÷(4+2)]-2

= 6+[12÷6]-2

6+2 - 2

= 8 - 2

6

Operation

Bracket

Power

Parenthesis

Parenthesis

Addition

Subtraction

Result

 

Problem 7 :

Evaluate :

(96 ÷ 12) + 14 x (12 + 8) ÷ 2

Solution :

Expression

(96÷12)+14x(12+8) ÷ 2

Evaluation

=(96÷12)+14x(12+8) ÷ 2

= 8 + 14x20 ÷ 2

= 8 + 280 ÷ 2

= 8 + 140

148

Operation

Bracket

Multiplication

Division

Addition

Result

 

Problem 8 :

Evaluate :

(93 + 15) ÷ (3 x 4) - 24 + 8

Solution :

Expression

(93+15)÷(3x4)-24+8

Evaluation

(93+15)÷(3x4)-24+8

108 ÷ 12 - 24 + 8

=  9 - 24 + 8

-15 + 8

=  -7

Operation

Bracket

Division

Subtraction

Subtraction

Result

 

Problem 9 :

Evaluate :

55 ÷ 11 + (18 - 6) x 9

Solution :

Expression

55÷11+(18-6)x9

Evaluation

= 55÷11+(18-6)x9

55÷11 + 12x9

= 5 + 12x9

5 + 108

113

Operation

Bracket

Division

Multiplication

Addition

Result

 

Problem 10 :

Evaluate :

(7 + 18) x 3 ÷ (2 + 13) - 28

Solution :

Expression

(7+18)x3÷(2+13)- 28

Evaluation

(7+18)x3÷(2+13)-28

25 x 3 ÷ 15 - 28

75 ÷ 15 - 28

5 - 28

-23

Operation

Bracket

Multiplication

Division

Subtraction

Result

Share:

Older Post


Translation missing: en.general.search.loading